REFERENCESHEET

The following formulas are provided for your reference. They do NOT need to be memorized, as they will be provided in the Examination Booklets.

$$
\begin{aligned}
& \mathrm{C}=\mathrm{C}_{0} \cdot 10^{\frac{-\mathrm{kt}}{2.303}} \quad \log \mathrm{C}=\log \mathrm{C}_{0}-\frac{\mathrm{kt}}{2.303} \\
& \mathrm{C}=\mathrm{C}_{0} \cdot \mathrm{e}^{-\mathrm{kt}} \quad \ln \mathrm{C}=\ln \mathrm{C}_{0}-\mathrm{kt} \\
& \mathrm{C}_{\mathrm{ave}}={\underline{\mathrm{AUC}_{0}}}^{\tau} \\
& \tau \\
& t_{1 / 2}=\frac{0.693}{k} \\
& t_{90}=\frac{0.105}{k} \\
& \mathrm{t}_{90}=\frac{0.1 \mathrm{C}_{0}}{\mathrm{k}} \\
& \mathrm{Cl}_{\mathrm{t}}=\frac{\text { Amount absorbed }}{\mathrm{AUC}_{0}^{\infty}} \text { or } \frac{\mathrm{FD}}{\mathrm{AUC}_{0}^{\infty}} \\
& \mathrm{V}_{\mathrm{d}}=\frac{\mathrm{A}_{0}}{\mathrm{C}_{0}} \\
& \overline{\mathrm{C}}_{\mathrm{ss}}=\frac{\mathrm{R}_{0}}{\mathrm{kV} \mathrm{~V}_{\mathrm{d}}} \\
& \mathrm{Cl}=\mathrm{V}_{\mathrm{d}} \mathrm{k} \\
& \mathrm{C}=\frac{\mathrm{R}_{0}}{\mathrm{kV}_{\mathrm{d}}}\left(1-e^{-k t}\right) \\
& \frac{\mathrm{k}}{2.303}=\frac{\log \mathrm{C}_{1}-\log \mathrm{C}_{2}}{\mathrm{t}_{2}-\mathrm{t}_{1}} \\
& \mathrm{~F}=\underline{\mathrm{AUC}_{\text {oral }} / \mathrm{D}} \\
& \mathrm{AUC}_{\mathrm{IV}} / \mathrm{D} \\
& \text { For weak acids, percent ionization }=\frac{100}{1+\operatorname{antilog}\left(\mathrm{pK}_{\mathrm{a}}-\mathrm{pH}\right)} \\
& \text { For weak bases, percent ionization }=\frac{100}{1+\operatorname{antilog}\left(\mathrm{pH}-\mathrm{pK}_{\mathrm{a}}\right)}
\end{aligned}
$$

